Abstract

The pontine projection of the flocculus and adjacent ventral paraflocculus was investigated with antegrade and retrograde axonal tracer techniques. Injections of horseradish peroxidase into the floccular complex revealed subsets of labeled neurons in the nucleus reticularis tegmenti pontis, the nucleus raphe pontis and the medial lemniscus. Following injections of tritiated leucine in these subsets, the topographical distribution of labeled mossy fibers in the floccular complex was studied. Cells clustered in the central part of the nucleus reticularis tegmenti pontis project to the rostral flocculus and the rostral part of the caudal flocculus. The terminal field of cells in the nucleus raphe pontis and of cells associated with the lateral aspect of the medial lemniscus covered the same area. The number of mossy fiber terminals arising from these cells is small and concentrated in a medial position. The medial extension of the ventral paraflocculus and its most caudal sublobule do receive a very dense mossy fiber projection from cells associated with the medial edge of the medial lemniscus next to the rostral nucleus reticularis tegmenti pontis and beyond. Concomitantly, a collateral projection terminates in a restricted part of the uvula. Labeled mossy fiber terminals were never observed in the nodulus. The nucleus reticularis tegmenti pontis does not project to any part of the lower brain stem. The connections described in this paper are discussed in relation to the possible role of the nucleus reticularis tegmenti pontis as a relay nucleus in brain stem pathways transmitting visual information. It is concluded that in the cat this nucleus is an exclusively pre-cerebellar relay, not involved as a final link in the non-cerebellar pathway transmitting visual information to the vestibular nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.