Abstract

BackgroundEntomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and non-host-seeking adults, which have been poorly correlated with human disease incidence. Exposure to mosquito-borne diseases can be more directly estimated using human landing catches (HLC), although this method is not recommended for Aedes-borne arboviruses. We evaluated a new method previously tested with malaria vectors, the mosquito electrocuting trap (MET) as an exposure-free alternative for measuring landing rates of Aedes mosquitoes on people. Aims were to (i) compare the MET to the BG-sentinel (BGS) trap gold standard approach for sampling host-seeking Aedes vectors; and (ii) characterize the diel activity of Aedes vectors and their association with microclimatic conditions.MethodsThe study was conducted over 12 days in Quinindé (Ecuador) in May 2017. Mosquito sampling stations were set up in the peridomestic area of four houses. On each day of sampling, each house was allocated either a MET or a BGS trap, which were rotated amongst the four houses daily in a Latin square design. Mosquito abundance and microclimatic conditions were recorded hourly at each sampling station between 7:00–19:00 h to assess variation between vector abundance, trapping methods, and environmental conditions. All Aedes aegypti females were tested for the presence of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses.ResultsA higher number of Ae. aegypti females were found in MET than in BGS collections, although no statistically significant differences in mean Ae. aegypti abundance between trapping methods were found. Both trapping methods indicated female Ae. aegypti had bimodal patterns of host-seeking, being highest during early morning and late afternoon hours. Mean Ae. aegypti daily abundance was negatively associated with daily temperature. No infection by ZIKV, DENV or CHIKV was detected in any Aedes mosquitoes caught by either trapping method.ConclusionWe conclude the MET performs at least as well as the BGS standard and offers the additional advantage of direct measurement of per capita human-biting rates. If detection of arboviruses can be confirmed in MET-collected Aedes in future studies, this surveillance method could provide a valuable tool for surveillance and prediction on human arboviral exposure risk.

Highlights

  • Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and non-host-seeking adults, which have been poorly correlated with human disease incidence

  • In 2017, estimates suggested that mosquitoes were responsible for approximately 137 million human arboviral infections with dengue (DENV), chikungunya (CHIKV) and Zika virus (ZIKV) being the most important [1]

  • In the case of malaria, this information is used to estimate a time or site-specific “Entomological Inoculation Rate” (EIR); defined as the number of infected mosquito bites a person is expected to receive. This metric is usually derived from conducting human landing catches (HLCs); a method in which a participant collects and counts the number of mosquito vectors landing on them over a given sampling period, the sample is tested for the presence of a pathogen [21]

Read more

Summary

Introduction

Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and non-host-seeking adults, which have been poorly correlated with human disease incidence. Arbovirus transmission to humans depends on multiple factors that involve spatial movement and immunity of human populations [2,3,4], socio-economic factors and access to basic services (especially water) [5, 6], and the ecology and distribution of the mosquito vectors that transmit them [7,8,9] These factors combine to determine the distribution and intensity of arboviral transmission and generate often complex and highly heterogeneous patterns of exposure and infection [10, 11]. In the case of malaria, this information is used to estimate a time or site-specific “Entomological Inoculation Rate” (EIR); defined as the number of infected mosquito bites a person is expected to receive This metric is usually derived from conducting human landing catches (HLCs); a method in which a participant collects and counts the number of mosquito vectors landing on them over a given sampling period, the sample is tested for the presence of a pathogen [21]. Such remediation is not possible for arboviruses where often no prophylaxis is available, and HLCs are not recommended for the surveillance of Aedes-borne arboviruses [27, 28]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call