Abstract

BackgroundsStudies on the association between ambient temperature and human mortality have been widely reported, focusing on common diseases such as cardiopulmonary diseases. However, multi-city studies on the association between both high and low temperatures and mortality of nervous system diseases were scarce, especially on the evidence of vulnerable populations. MethodsWeekly meteorological data, air pollution data and mortality data of nervous system were collected in 5 cities in China. A quasi-Poisson regression with distributed lag non-linear model (DLNM) was applied to quantify the association between extreme temperatures and mortality of nervous system diseases. Multivariate meta-analysis was applied to estimate the pooled effects at the overall levels. The attributable fractions (AFs) were calculated to assess the mortality burden attributable to both high and low temperatures. Stratified analyses were also performed by gender and age-groups through the above steps. ResultsA total of 12,132 deaths of nervous system diseases were collected in our study. The overall minimum mortality temperature was 23.9 °C (61.9th), the cumulative relative risks of extreme heat and cold for nervous system diseases were 1.33(95%CI: 1.10, 1.61) and 1.47(95%CI: 1.27, 1.71). The mortality burden attributed to non-optimal temperatures accounted for 29.54% (95%eCI: 13.45%, 40.52%), of which the mortality burden caused by low temperature and high temperature accounted for 25.89% (95%eCI: 13.03%, 34.36%) and 3.65% (95%eCI: 0.42%, 6.17%), respectively. The mortality burden attributable to ambient temperature was higher in both males and the elderly (>74 years old), with the AF of 31.85% (95%eCI: 20.68%, 39.88%) and 31.14% (95%eCI: −6.83%, 49.51%), respectively. ConclusionsThe non-optimal temperature can increase the mortality of nervous system diseases and the males and the elderly over 74 years have the highest attributable burden. The findings add the evidence of vulnerable populations of nervous system diseases against ambient temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call