Abstract
AbstractLet f:M→ℝ be a Morse–Bott function on a compact smooth finite-dimensional manifold M. The polynomial Morse inequalities and an explicit perturbation of f defined using Morse functions fj on the critical submanifolds Cj of f show immediately that MBt(f)=Pt(M)+(1+t)R(t), where MBt(f) is the Morse–Bott polynomial of f and Pt(M) is the Poincaré polynomial of M. We prove that R(t) is a polynomial with non-negative integer coefficients by showing that the number of gradient flow lines of the perturbation of f between two critical points p,q∈Cj of relative index one coincides with the number of gradient flow lines between p and q of the Morse function fj. This leads to a relationship between the kernels of the Morse–Smale–Witten boundary operators associated to the Morse functions fj and the perturbation of f. This method works when M and all the critical submanifolds are oriented or when ℤ2 coefficients are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.