Abstract
We study the spectrum of Schrodinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive relations between the Morse and Maslov indices for a family of operators on a Hilbert space obtained by perturbing a given self-adjoint operator by a smooth family of bounded self-adjoint operators. The abstract results are applied to the Schrodinger operators with θ-periodic, Dirichlet, and Neumann boundary conditions. In particular, we derive an analogue of the Morse-Smale Index Theorem for multi-dimensional Schrodinger operators with periodic potentials. For quasi-convex domains in Rn, we recast the results, connecting the Morse and Maslov indices using the Dirichlet and Neumann traces on the boundary of the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.