Abstract

Supernumerary compound eyes in Drosophila melanogaster produced by the extra eye ( ee) mutation were analyzed with regard to their morphology, physiology, and neural projections. Electron and light microscopy revealed that large extra eyes often possess the normal complement of compound-eye cell types and that these cells usually have standard fine structure. In addition, the array of photoreceptor cell rhabdomeres within individual supernumerary ommatidia is standardly trapezoidal, and ommatidial subpopulations having mirror-image configurations of their rhabdomeric trapezoids are separated by an equator in extra eyes. Light stimulation of supernumerary eyes can elicit photoreceptor depolarization potentials as evidenced by electroretinographic recordings from them. In addition, extra-eye photoreceptor cells have a functional pupillary response to light stimulation. Although the supernumerary eyes can be functionally and anatomically standard, examination of serial, silver-stained sections of extra-eye heads has shown that their photoreceptor axons seldom innervate the brain. This situation obtains even in a case in which the normal, ipsilateral compound eye was removed by the eyeless mutation. In contrast, rare supernumerary antennae occasionally found in ee stocks have receptor cells whose axons innervate ventral brain. In addition to duplications of cuticular epithelia, extra glial cells, muscle fibers, and ocellar interneurons are sometimes found in extra-eye bearing flies. Discussion of these results focuses on a polarity guidance hypothesis which models the growth of adult photoreceptor axons into the brain during normal development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call