Abstract

Many benthic batoids utilize their pectoral fins for both undulatory locomotion and feeding. Certain derived, pelagic species of batoids possess cephalic lobes, which evolved from the anterior pectoral fins. These species utilize the pectoral fins for oscillatory locomotion while the cephalic lobes are used for feeding. The goal of this article was to compare the morphology of the cephalic lobes and anterior pectoral fins in species that possess and lack cephalic lobes. The skeletal elements (radials) of the cephalic lobes more closely resembled the radials in the pectoral fin of undulatory species. Second moment of area (I), calculated from cephalic lobe radial cross sections, and the number of joints revealed greater flexibility and resistance to bending in multiple directions as compared to pectoral fin radials of oscillatory species. The cephalic lobe musculature was more complex than the anterior pectoral fin musculature, with an additional muscle on the dorsal side, with fiber angles running obliquely to the radials. In Rhinoptera bonasus, a muscle presumably used to help elevate the cephalic lobes is described. Electrosensory pores were found on the cephalic lobes (except Mobula japonica) and anterior pectoral fins of undulatory swimmers, but absent from the anterior pectoral fins of oscillatory swimmers. Pore distributions were fairly uniform except in R. bonasus, which had higher pore numbers at the edges of the cephalic lobes. Overall, the cephalic lobes are unique in their anatomy but are more similar to the anterior pectoral fins of undulatory swimmers, having more flexibility and maneuverability compared to pectoral fins of oscillatory swimmers. The maneuverable cephalic lobes taking on the role of feeding may have allowed the switch to oscillatory locomotion and hence, a more pelagic lifestyle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call