Abstract

The deformation, crack nucleation, coalescence, and rupture process of pure tantalum (99.9 pct) were studied under room temperature quasistatic loading using several in situ and ex-situ techniques including optical metallography, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission-electron microscopy (TEM). The fracture surface of tantalum forms a ridge-and-valley morphology that is distinct from conventional notions of ductile dimple microvoid coalescence, and also distinct from spall damage formed during dynamic shock conditions. Failure proceeds by void nucleation at a dislocation cell wall or in subgrain interiors. Coalescence appears to involve a two-stage damage progression: first individual voids coalesce along the tensile axis forming diamond-shaped multivoid cavities; then cavities link-up by intercavity necking. Final rupture occurs when the intercavity necks thin to ~100-nm films and fail by crystallographic cleavage. This final tearing process was observed using in situ TEM tensile deformation of a thin tantalum film. The detailed microstructural and morphological observations of the current study can be used to guide the development of improved models for tearing of ductile metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call