Abstract

Abstract Different iron–chromium alloys (4, 8, 13 and 20 wt.% Cr) were nitrided in NH3/H2 gas mixtures at 580°C. The nitrided microstructure was investigated by X-ray diffraction, light microscopy, hardness measurements and scanning electron microscopy. Composition depth-profiles of the nitrided zone were determined by electron probe microanalysis. Various microstructures develop, depending on the nitriding conditions and the alloy composition (chromium content). The initial development of coherent, sub-microscopical CrN nitrides leads to a state of hydrostatic stress allowing the uptake of excess nitrogen dissolved in the ferrite matrix. It is shown that the outcome of the subsequent discontinuous coarsening process, which leads to a lamellar microstructure, has a close relation to the nitrogen supersaturation. As a result, the occurrence of a distinct gradient in hardness across the nitrided zone can be understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.