Abstract

Artificial light at night (ALAN) is a pervasive pollutant that influences wildlife at both the individual and community level. In this study, we tested the individual-level effects of ALAN on three species of tadpole prey and their newt predators by measuring prey pigmentation and predator and prey mass. Then we evaluated whether the individual-level effects of ALAN on pigmentation and mass had cascading community-level effects by assessing the outcome of predator-prey interactions. We found that spring peepers exposed to ALAN were significantly darker than those reared under control conditions. Additionally, wood frogs reared in ALAN conditions were significantly smaller than those reared in control conditions. In contrast, Eastern newts collected earlier in the spring that were exposed to ALAN were significantly larger than controls while those collected later in the spring were not affected by ALAN, suggesting phenological differences in the effect of ALAN. To understand how changes in pigmentation and size due to ALAN influence predation rates, we ran predation assays in both ALAN-polluted and ALAN-free outdoor environments. After the predation assay, the size disparity in wood frogs reared in ALAN was eliminated such that there was no longer a treatment difference in wood frog size, likely due to size-selective predation. This demonstrates the beneficial nature of predators’ selective pressure on prey populations. Lastly, despite individual-level effects of ALAN on pigmentation and mass, we did not detect cascading community-level effects on predation rates. Overall, this study highlights important species-level distinctions in the effects of ALAN. It also emphasizes the need to incorporate ecological complexity to understand the net impact of ALAN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call