Abstract

Increased urbanization means human beings become the dominant species and reduction in canopy cover. Globally, urban trees grow under challenging and complex circumstances with urbanization trends of increasing anthropogenic carbon dioxide (CO2) emissions, high temperature and drought stress. This study aims to provide a better understanding of urban trees’ morpho-physio-biochemical attributes that can support sustainable urban greening programs and urban climate change mitigation policies. Globally, urban dwellers’ population is on the rise and spreading to suburban areas over time with an increase in domestic CO2 emissions. Uncertainty and less information on urban tree diversification and resistance to abiotic stress may create deterioration of ecosystem resilience over time. This review uses general parameters for urban tree physiology studies and employs three approaches for evaluating ecosystem resilience based on urban stress resistance in relation to trees’ morphological, physiological and biochemical attributes. Due to the lack of a research model of ecosystem resilience and urban stress resistance of trees, this review demonstrates that the model concept supports future urban tree physiology research needs. In particular, it is necessary to develop integral methodologies and an urban tree research concept to assess how main and combined effects of drought and/or climate changes affect indigenous and exotic trees that are commonly grown in cities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call