Abstract

This work investigates the fabrication, experimentation, testing, and modeling of shape memory composites consisting of two-way shape memory alloy (SMA) tubes embedded in a shape memory polymer (SMP) matrix. The hybrid system here investigated is thermally activated via internal transport of thermal fluids through the SMA vascular system. The resulting shape memory composite (SMC) combines the high modulus and high specific actuation force of SMAs with the strong shape fixing and variable stiffness of SMPs to create a light-weight composite capable of controllably and rapidly achieving two shape memory states. Specifically, a 25° thermally induced out-of-plane bending state is achieved with a 2% volume fraction of SMA in the composite after 2 min of being activated by an internal thermal fluid. Here, while the thermal structural design of the SMC was not optimized and the thermal cycling was significantly restricted by the low thermal conduction of the SMP, the deflection of the composite was within 20% of the expected value modeled by the thermal–mechanical finite element analysis (FEA) here performed. The close agreement between the experimental performance and the modeled composite response suggests that morphing composites based on SMAs and SMPs are promising structures for adaptive applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call