Abstract
We introduce a framework that adapts local and non-local continuum models to simulate static fracture problems. Non-local models based on the peridynamic theory are promising for the simulation of fracture, as they allow discontinuities in the displacement field. However, they remain computationally expensive. As an alternative, we develop an adaptive coupling technique based on the morphing method to restrict the non-local model adaptively during the evolution of the fracture. The rest of the structure is described by local continuum mechanics. We conduct all simulations in three dimensions, using the relevant discretization scheme in each domain, i.e., the discontinuous Galerkin finite element method in the peridynamic domain and the continuous finite element method in the local continuum mechanics domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.