Abstract

The nonconforming Morley-type virtual element method for the incompressible Navier–Stokes equations formulated in terms of the stream-function on simply connected polygonal domains (not necessarily convex) is designed. A rigorous analysis by using a new enriching operator is developed. More precisely, by employing such operator, we provide novel discrete Sobolev embeddings, which allow to establish the well-posedness of the discrete scheme and obtain optimal error estimates in broken H2-, H1- and L2-norms under minimal regularity condition on the weak solution. The velocity and vorticity fields are recovered via a postprocessing formulas. Furthermore, a new algorithm for pressure recovery based on a Stokes complex sequence is presented. Optimal error estimates are obtained for all the postprocessed variables. Finally, the theoretical error bounds and the good performance of the method are validated through several benchmark tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call