Abstract
Self-inhibition has been observed widely in hierarchical biochemical processes but has yet to be demonstrated in pure molecular physical rather than chemical or biological processes. Herein, we report an unprecedented example of self-inhibition during the supramolecular chirality induction, memory, erasure, and inversion processes of pillar[5]arene (P[5]) derivatives. The addition of chiral alanine ethyl ester to bulky substituent-modified P[5]s led to time-dependent chirality induction due to the shift in the equilibrium of the SP and RP conformers P[5]. Intriguingly, more chiral inducers led to more intensive final chiroptical properties but lower chiral induction rates. Thus, the chiral inducer plays the role of both activator and inhibitor. Such self-inhibition essentially arises from kinetics manipulation of three tandem equilibria. Moreover, the chiroptical properties could be memorized by replacing the chiral inducer with an achiral competitive binder, and the chiroptical signal could be erased and reversed by an antipodal chiral inducer, which also showed the self-inhibition property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.