Abstract
Let R be a unital ring with involution. In this paper, we first show that for an element a 2 R, a is Moore-Penrose invertible if and only if a is well-supported if and only if a is co-supported. Moreover, several new necessary and sufficient conditions for the existence of the Moore-Penrose inverse of an element in a ring R are obtained. In addition, the formulae of the Moore-Penrose inverse of an element in a ring are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.