Abstract

ABSTRACT The Solar system planets are benchmarks for the planet formation theory. Yet two paradigms coexist for the four terrestrial planets: the prolonged collisional growth among planetesimals lasting $\gt 100$ million years (Myr) and the fast formation via planetesimals accreting pebbles within 10 Myr. Despite their dramatic difference, we can hardly tell which theory is more relevant to the true history of the terrestrial planets’ formation. Here, we show that the Moon’s origin puts stringent constraints on the pebble accretion scenario, rendering it less favourable. In the pebble accretion model, the one-off giant impact between proto-Earth and Theia rarely (probability $\lt $ 1‰) occurs at the right timing and configuration for the Moon formation. Even if a potential impact happens by chance, giant impact simulations reveal perfect mixing between proto-Earth and Theia, leaving no room for the observed primordial Earth mantle heterogeneity and the compositional difference, though small, between Earth and the Moon. Thus, the Earth–Moon system along other terrestrial planets should preferably form from chaotic collisional growth in the inner Solar system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.