Abstract

Hyperbolic systems of PDEs can be solved to arbitrary orders of accuracy by using the ADER Finite Volume method. These PDE systems may be non-conservative and non-homogeneous, and contain stiff source terms. ADER-FV requires a spatio-temporal polynomial reconstruction of the data in each spacetime cell, at each time step. This reconstruction is obtained as the root of a nonlinear system, resulting from the use of a Galerkin method. It was proved in [7] that for traditional choices of basis polynomials, the eigenvalues of certain matrices appearing in these nonlinear systems are always 0, regardless of the number of spatial dimensions of the PDEs or the chosen order of accuracy of the ADER-FV method. This guarantees fast convergence to the Galerkin root for certain classes of PDEs.In Montecinos and Balsara [8] a new, more efficient class of basis polynomials for the one-dimensional ADER-FV method was presented. This new class of basis polynomials, originally presented for conservative systems, is extended to multidimensional, non-conservative systems here, and the corresponding property regarding the eigenvalues of the Galerkin matrices is proved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call