Abstract

We consider families of Abelian integrals arising from perturbations of planar Hamiltonian systems. The tangential center-focus problem asks for conditions under which these integrals vanish identically. The problem is closely related to the monodromy problem, which asks when the monodromy of a vanishing cycle generates the whole homology of the level curves of the Hamiltonian. We solve both of these questions for the case in which the Hamiltonian is hyperelliptic. As a by-product, we solve the corresponding problems for the 0-dimensional Abelian integrals defined by Gavrilov and Movasati.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.