Abstract

A targeted modulation of the endocannabinoid system is currently discussed as a promising strategy for cancer treatment. An important enzyme for the endocannabinoid metabolism is the monoacylglycerol lipase (MAGL), which catalyzes the degradation of 2-arachidonoylglycerol (2-AG) to glycerol and free fatty acids. In this study, we investigated the influence of MAGL inhibition on lung cancer cell invasion and metastasis. Using LC-MS, significantly increased 2-AG levels were detected in A549 cells treated with the MAGL inhibitor JZL184. In athymic nude mice, JZL184 suppressed metastasis of A549 cells in a dose-dependent manner, whereby the antimetastatic effect was cancelled by the CB1 receptor antagonist AM-251. In vitro, JZL184 induced a time- and concentration-dependent reduction of A549 cell invasion through Matrigel-coated membranes, which was likewise reversed by AM-251. An MAGL inhibition-associated reduction of free fatty acids as a cause of the anti-invasive effect could be excluded by add-back experiments with palmitic acid. Both JZL184 and the MAGL substrate 2-AG led to an increased formation of the tissue inhibitor of metalloproteinase-1 (TIMP-1), whereby a TIMP-1 knockdown using siRNA significantly attenuated the anti-invasive effects of both substances. Decreased invasion and TIMP-1 upregulation was also caused by the MAGL inhibitors JW651 and MJN110 or transfection with MAGL siRNA. A CB1- and TIMP-1-dependent anti-invasive effect was further confirmed for JZL184 in H358 lung cancer cells. In conclusion, MAGL inhibition led to a CB1-dependent decrease in human lung cancer cell invasion and metastasis via inhibition of 2-AG degradation, with TIMP-1 identified as a mediator of the anti-invasive effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call