Abstract

We have begun a large-scale photometric survey of nearby open clusters and star-forming regions, the Monitor project, aiming to measure time-series photometry for > 10 000 cluster members over > 10 deg 2 of sky, to find low-mass eclipsing binary and planet systems. We describe the software pipeline we have developed for this project, showing that we can achieve peak rms accuracy over the entire data set of better than ∼2 mmag using aperture photometry, with rms < 1 per cent over ∼4 mag, in data from 2- and 4-m class telescopes with wide-field mosaic cameras. We investigate the noise properties of our data, finding correlated 'red' noise at the ∼ 1-1.5 mmag level in bright stars, over transit-like time-scales of 2.5 h. An important source of correlated noise in aperture photometry is image blending, which produces variations correlated with the seeing. We present a simple blend index based on fitting polynomials to these variations, and find that subtracting the fit from the data provides a method to reduce their amplitude, in lieu of using techniques, such as point spread function fitting photometry, which tackle their cause. Finally, we use the SYSREM algorithm to search for any further systematic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.