Abstract

We establish that every monadic second-order property of the behaviour of a machine (transition systems and tree automata are typical examples of machines) is a monadic second-order property of the machine itself. In this way, we clarify the distinction between “dynamic” properties of machines (i.e., properties of their behaviours), and their “static” properties (i.e., properties of the graphs or relational structures representing them). It is important for program verification that the dynamic properties that one wants to verify can be formulated statically, in the simplest possible way. As a corollary of our main result, we also obtain that the monadic theory of an algebraic tree is decidable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.