Abstract

The drag of an adiabatic flat plate in an ionized gas for a constant magnetic field applied to the boundary layer on the plate is found by a momentum integral approximation of von Karman. Laminar, two-dimensional flow, zero pressure gradient, small magnetic Reynolds number, and negligible electrical conductivity outside the boundary layer are assumed. The solution is valid in particular to a continuous, perfect-gas plasma, of unitary Prandtl number, and for conditions when the interaction parameter is very small. The solution shows the following effects: The adiabatic wall temperature is independent of the magnetic field; there is an increase in the boundary-layer thickness as the magnetic-field strength is increased; and the viscous drag coefficient decreases whereas the coefficient of total drag increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.