Abstract
The Moment-SOS hierarchy, first introduced in optimization in 2000, is based on the theory of the S-moment problem and its dual counterpart: polynomials that are positive on S. It turns out that this methodology can also be used to solve problems with positivity constraints ‘f(x) ≥ 0 for all $\mathbf{x}\in S$ ’ or linear constraints on Borel measures. Such problems can be viewed as specific instances of the generalized moment problem (GMP), whose list of important applications in various domains of science and engineering is almost endless. We describe this methodology in optimization and also in two other applications for illustration. Finally we also introduce the Christoffel function and reveal its links with the Moment-SOS hierarchy and positive polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.