Abstract

In this paper, we present a polymorphic processor paradigm incorporating both general-purpose and custom computing processing. The proposal incorporates an arbitrary number of programmable units, exposes the hardware to the programmers/designers, and allows them to modify and extend the processor functionality at will. To achieve the previously stated attributes, we present a new programming paradigm, a new instruction set architecture, a microcode-based microarchitecture, and a compiler methodology. The programming paradigm, in contrast with the conventional programming paradigms, allows general-purpose conventional code and hardware descriptions to coexist in a program: In our proposal, for a given instruction set architecture, a onetime instruction set extension of eight instructions, is sufficient to implement the reconfigurable functionality of the processor. We propose a microarchitecture based on reconfigurable hardware emulation to allow high-speed reconfiguration and execution. To prove the viability of the proposal, we experimented with the MPEG-2 encoder and decoder and a Xilinx Virtex II Pro FPGA. We have implemented three operations, SAD, DCT, and IDCT. The overall attainable application speedup for the MPEG-2 encoder and decoder is between 2.64-3.18 and between 1.56-1.94, respectively, representing between 93 percent and 98 percent of the theoretically obtainable speedups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.