Abstract

The molecular weights of Ehrlich tumor cell ribonucleotide reductase and its individual components were determined by sedimentation equilibrium in the Beckman Airfuge. The distribution of enzyme after sedimentation equilibrium was determined by measurement of the CDP reductase and ADP reductase activities associated with ribonucleotide reductase. The apparent molecular weight of the intact enzyme was 304,000 when assayed for CDP reductase and 254,000 when assayed for ADP reductase. This difference in apparent molecular weights was statistically significant with a P value of 0.0002. The molecular weights of the individual components of ribonucleotide reductase were determined in a similar fashion by assaying in the presence of an excess of the complementary component. The non-heme iron component had a molecular weight of 81,000 when assayed for either CDP or ADP reductase activity. The effector-binding component had an apparent molecular weight of 127,000 when assayed for CDP reductase and 95,000 when assayed for ADP reductase. This difference in apparent molecular weights was statistically significant with a P value of 0.004. The effectors ATP and dGTP altered the apparent molecular weights of the intact enzyme and individual components. In the presence of ATP the molecular weight of intact CDP reductase was 481,000 while the apparent molecular weight of the effector-binding component of CDP reductase alone was 418,000. In the presence of dGTP, the molecular weight of intact ADP reductase was 293,000 while the apparent molecular weight of the effector-binding component of ADP reductase alone was 154,000. These results indicate that the proportion of the non-heme iron component and the effector-binding component is not equimolar and that the composition of the enzyme is not constant but is altered by the presence of effectors. Our data also suggest that CDP reduction and ADP reduction are catalyzed by different molecular species of the enzyme which apparently have different effector-binding components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.