Abstract

To discuss how innate muscle stem-cell metabolism and nutrient availability can provide temporal regulation of chromatin accessibility and transcription. Fluorescence-activated cell sorting coupled with whole transcriptome sequencing revealed for the first time that quiescent and proliferating skeletal muscle stem cells exhibit a process of metabolic reprogramming, from fatty-acid oxidation during quiescence to glycolysis during proliferation. Using a combination of immunofluorescence and chromatin immunoprecipitation sequencing, this shift in metabolism has been linked to altered availability of key metabolites essential for histone (de)acetylation and (de)methylation, including acetyl-CoA, s-adenosylmethionine and α-ketoglutarate. Importantly, these changes in metabolite availability have been linked to muscle stem-cell function. Together, these results provide greater insight into how muscle stem cells interact with their local environment, with important implications for metabolic diseases, skeletal muscle regeneration and cell-transplantation therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call