Abstract

The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi, (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study, we evaluated how well the enzymatic machinery of the white-rot fungus Dichomitus squalens is tailored to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analyzed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good a match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant biomass types not present in its natural habitat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.