Abstract

Skeletal muscle atrophy is a debilitating condition that commonly occurs as a secondary consequence of many acute and chronic medical conditions, including muscle disuse, heart and renal failure, starvation, cancer, HIV/AIDS, and aging. Though it leads to weakness, falls, and fractures, and reduces independence and quality of life for millions of Americans annually, no effective pharmacologic therapies for muscle atrophy exist. This is largely due to a poor understanding of the pathogenesis of skeletal muscle atrophy at a molecular level. In this thesis, I describe my studies into the molecular pathogenesis of skeletal muscle atrophy. Using mouse models, I showed that the gene encoding the pro-atrophy nuclear protein Gadd45a is regulated by distinct pathways after muscle denervation and fasting, and also identified a novel protein regulating skeletal muscle fiber size. First, we demonstrated that denervation-induced muscle atrophy, unlike atrophy mediated by fasting, does not require the bZIP transcription factor ATF4. However, the lysine deacetylase HDAC4 is sufficient to induce Gadd45a mRNA and necessary for Gadd45a mRNA induction after denervation, but not after fasting. Taken together, these data show that Gadd45a is a central convergence point for muscle atrophy caused by several stimuli, and also demonstrate that distinct pathways mediate Gadd45a induction in different models of skeletal muscle atrophy. Second, we identified spermine oxidase as a critical regulator of muscle fiber size. We observed that spermine oxidase mRNA and spermine oxidase protein were reduced by several distinct causes of muscle atrophy (i.e. immobilization, denervation, fasting, and aging). Furthermore, spermine oxidase overexpression increased muscle fiber size, while spermine oxidase knockdown caused muscle fiber atrophy. Restoring spermine oxidase expression significantly attenuated muscle atrophy after limb immobilization, denervation, and fasting. Finally, we identified p21 as a key upstream regulator of

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.