Abstract

Synaptic plasticity is an important cellular mechanism for the formation of memory in neuronal circuits of the brain. Research during the past two decades has revealed surprisingly complex signal-transduction processes that underlie various forms of synaptic plasticity. More than 30 molecules are involved in the induction of long-term depression (LTD) — a unique form of synaptic plasticity in the cerebellum. Here, I review recent data on these molecules, defining their roles as mediators or modulators, coincidence detectors or components of a self-regenerating circuit, and show how they are organized to form an efficient molecular machinery for LTD induction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.