Abstract

Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress and non-stress conditions.

Highlights

  • As an essential macronutrient, phosphorus (P) plays vital roles in plant growth, development, and metabolism

  • Genetic, and genomic approaches, we identify a group of genes that affect root hair development by regulating cell wall modifications

  • EIN3 protein directly binds to the promoter of these genes which are targeted by a key transcription factor that regulates root hair development

Read more

Summary

Introduction

Phosphorus (P) plays vital roles in plant growth, development, and metabolism. When plants are exposed to Pi deficiency, they activate an array of adaptive responses to cope with this nutritional stress. These responses involve developmental, biochemical, and physiological changes, including the reprogramming of root development; increased activities of high affinity Pi transporters; the induction and secretion of acid phosphatases, RNases, and organic acids; and the accumulation of anthocyanin and starch [2,3]. The increase in root hair density in Pi deficient-plants is due to the increase in trichoblast file number, the reduction in trichoblast length, and/or the increase in the percentage of trichoblast cells that form root hairs [11,12]

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call