Abstract

Drosophila fruit flies display robust olfactory-driven behaviors with an olfactory system far simpler than that of vertebrates. Endowed with 1300 olfactory receptor neurons, these insects are able to recognize and discriminate between a large number of distinct odorants. Candidate odorant receptor molecules were identified by complimentary approaches of differential cloning and genome analysis. The Drosophila odorant receptor (DOR) genes encode a novel family of proteins with seven predicted membrane-spanning domains, unrelated to vertebrate or nematode chemosensory receptors. There are on the order of 60 or more members of this gene family in the Drosophila genome, far fewer than the hundreds to thousands of receptors found in vertebrates or nematodes. DOR genes are selectively expressed in small subsets of olfactory neurons, in expression domains that are spatially conserved between individuals, bilaterally symmetric and not sexually dimorphic. Double in situ RNA hybridization with a number of pairwise combinations of DOR genes fails to reveal any overlap in gene expression, suggesting that each olfactory neuron expresses one or a small number of receptor genes and is therefore functionally distinct. How is activation of such a subpopulation of olfactory receptor neurons in the periphery sensed by the brain? In the mouse, all neurons expressing a given receptor project with precision to two of 1800 olfactory bulb glomeruli, creating a spatial map of odor quality in the brain. We have employed DOR promoter transgenes that recapitulate expression of endogenous receptor to visualize the projections of individual populations of receptor neurons to subsets of the 43 glomeruli in the Drosophila antennal lobe. The results suggest functional conservation in the logic of olfactory discrimination from insects to mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call