Abstract

ETMRs are aggressive pediatric embryonal brain tumors with universally dismal outcome1. We collected 193 primary ETMRs and 23 matched relapses to investigate the genomic landscape of this distinct entity. We found that patients having tumors without C19MC amplification, the proposed driver3–5, frequently harbor DICER1 germline mutations or other miRNA-related aberrations including somatic miR-17–92 amplifications. Whole-genome sequencing revealed an overall low recurrence of SNVs, but prevalent R-loop-associated chromosomal instability, of which we show that this can be induced by loss of DICER1 function. Comparing primary tumors and matched relapses revealed a strong conservation of SVs but low conservation of SNVs. Moreover, many newly acquired SNVs are associated to a new cisplatin treatment related mutational signature. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.