Abstract

The suggestion is made that, in solution, the flexible-chain molecules of dextran can undergo an osmotic compression as concentration is increased. Approaches are developed described the molecular shrinkage (i) as arising from intra- and inter-molecular forces, (ii) based on the molecular characteristics of the dextran, and (iii) as estimated by viscosity measurements. Comparison with the macroscopic shrinkage of cross-linked dextran (Sephadex) beads [Edmond, Farquhar, Dunstone & Ogston (1968) Biochem. J. 108, 755-763] is made. In all systems studied, the experimental estimates of compression, both from gel-shrinkage and viscosity measurements were in reasonable agreement with theoretical predictions. The interpretation of the viscosity concentration-dependence was applied to compact structures (albumin and Percoll). Their behaviour was in marked contrast with that of dextran. It is noted that molecular compression may be important in considering transport processes in and thermodynamic properties of concentrated systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.