Abstract
The circadian clock is a core molecular mechanism that allows organisms to anticipate daily environmental changes and adapt the timing of behaviors to maximize efficiency. In social insects, the ability to maintain the appropriate temporal order is thought to improve colony efficiency and fitness. We used the newly sequenced fire ant (Solenopsis invicta) genome to characterize the first ant circadian clock. Our results reveal that the fire ant clock is similar to the clock of the honeybee, a social insect with an independent evolutionary origin of sociality. Gene trees for the eight core clock genes, period, cycle, clock, cryptochrome-m, timeout, vrille, par domain protein 1 & clockwork orange, show ant species grouping closely with honeybees and Nasonia wasps as an outgroup to the social Hymenoptera. Expression patterns for these genes suggest that the ant clock functions similar to the honeybee clock, with period and cry-m mRNA levels increasing during the night and cycle and clockwork orange mRNAs cycling approximately anti-phase to period. Gene models for five of these genes also parallel honeybee models. In particular, the single ant cryptochrome is an ortholog of the mammalian-type (cry-m), rather than Drosophila-like protein (cry-d). Additionally, we find a conserved VPIFAL C-tail region in clockwork orange shared by insects but absent in vertebrates. Overall, our characterization of the ant clock demonstrates that two social insect lineages, ants and bees, share a similar, mammalian-like circadian clock. This study represents the first characterization of clock genes in an ant and is a key step towards understanding socially-regulated plasticity in circadian rhythms by facilitating comparative studies on the organization of circadian clockwork.
Highlights
The circadian clock is a core molecular mechanism that allows organisms to anticipate daily environmental changes and adapt the timing of behaviors to maximize their efficiency
We develop gene models for five genes in order to determine the degree of conservation for domains present in the ant clock and shared with mammalian and Drosophila models
The molecular dissection of the fire ant circadian clock reveals that ants have a mammalian-like clock with high similarity to the
Summary
The circadian clock is a core molecular mechanism that allows organisms to anticipate daily environmental changes and adapt the timing of behaviors to maximize their efficiency. The protein products of clock (Clk) and cycle (Cyc) genes interact and form a complex that bind to E-box elements in regulatory sequences of the period (Per) and timeless (Tim) gene promoter regions to activate transcription. Per and Tim mRNA accumulate in the cytoplasm during the night and the protein products enter the nucleus and bind to the CLK/CYC complex, inhibiting further transcription. Mapping the diversity in insect clock structure on an evolutionary backdrop of organisms that vary in key life history characteristics including social structure may reveal how evolution has shaped the various functions of the clock components [1,3,4,11,12,14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.