Abstract
The WHO grading scheme for glial neoplasms assigns Grade II to 5 distinct tumors of astrocytic or oligodendroglial lineage: diffuse astrocytoma, oligodendroglioma, oligoastrocytoma, pleomorphic xanthoastrocytoma, and pilomyxoid astrocytoma. Although commonly referred to collectively as among the "low-grade gliomas," these 5 tumors represent molecularly and clinically unique entities. Each is the subject of active basic research aimed at developing a more complete understanding of its molecular biology, and the pace of such research continues to accelerate. Additionally, because managing and predicting the course of these tumors has historically proven challenging, translational research regarding Grade II gliomas continues in the hopes of identifying novel molecular features that can better inform diagnostic, prognostic, and therapeutic strategies. Unfortunately, the basic and translational literature regarding the molecular biology of WHO Grade II gliomas remains nebulous. The authors' goal for this review was to present a comprehensive discussion of current knowledge regarding the molecular characteristics of these 5 WHO Grade II tumors on the chromosomal, genomic, and epigenomic levels. Additionally, they discuss the emerging evidence suggesting molecular differences between adult and pediatric Grade II gliomas. Finally, they present an overview of current strategies for using molecular data to classify low-grade gliomas into clinically relevant categories based on tumor biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.