Abstract

The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.