Abstract
Polyynes (polyacetylenes), which are produced by a variety of organisms, play important roles in ecology. Whereas alkyne biosynthesis in plants, fungi, and insects has been studied, the biogenetic origin of highly unstable bacterial polyynes has remained a riddle. Transposon mutagenesis and genome sequencing unveiled the caryoynencin (cay) biosynthesis gene cluster in the plant pathogen B. caryophylli, and homologous gene clusters were found in various other bacteria by comparative genomics. Gene inactivation and phylogenetic analyses revealed that novel desaturase/acetylenase genes mediate bacterial polyyne assembly. A cytochrome P450 monooxygenase is involved in the formation of the allylic alcohol moiety, as evidenced by analysis of a fragile intermediate, which was stabilized by an in situ click reaction. This work not only grants first insight into bacterial polyyne biosynthesis but also demonstrates that the click reaction can be employed to trap fragile polyynes from crude mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.