Abstract

The N-end rule pathway is a conserved targeted proteolytic process observed in organisms ranging from eubacteria to mammals. The N-end rule relates the metabolic stability of a protein to its N-terminal amino acid residue. The identity of the N-terminal amino acid residue is a primary degradation signal, often referred to as an N-degron, which is recognized by the components of the N-end rule when it is a destabilizing N-terminus. N-degrons may be exposed by non-processive proteolytic cleavages or by post-translational modifications. One modification is the post-translational addition of amino acids to the N-termini of proteins, a reaction catalyzed by aminoacyl-tRNA protein transferases. The aminoacyl-tRNA protein transferase in eubacteria like Escherichia coli is L/F transferase. Recent investigations have reported unexpected observations regarding the L/F transferase catalytic mechanism and its mechanisms of substrate recognition. Additionally, recent proteome-wide identification of putative in vivo substrates facilitates hypothesis into the yet elusive biological functions of the prokaryotic N-end rule pathway. Here we summarize the recent findings on the molecular mechanisms of catalysis and substrate recognition by the E. coli L/F transferase in the prokaryotic N-end rule pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.