Abstract

Restricted feeding regimes in rodents that extend longevity lower the rate of mitochondrial reactive oxygen species generation. This effect is not dependent upon the depression of the state III and IV mitochondrial respiration rates. Mitochondria from liver, skeletal muscle and brown adipose tissue adapt to DR feeding with a lowered membrane potential that results from an enhanced proton leak across the inner membrane. Mitochondrial ROS generation is very sensitive to the magnitude of the membrane potential and the enhanced proton leak and ROS generation rates are reversible by exogenous insulin in liver and heart mitochondria. The adenine nucleotide translocase (ANT) was shown to be the dominant proton leak channel induced under DR feeding regimes in these tissues, while in brown fat mitochondria, UCP1 was activated, but this was not sensitive to exogenous insulin treatment. The effect of DR to modify the proton leak, membrane potential and ROS generation rate can be simulated by a range of non-esterified free fatty acids (NEFA) acting on the ANT to enhance its protonophoric activity. Mobilisation of NEFA under DR feeding, when insulin plasma concentrations are extremely low, explains the indirect action of insulin to counteract the effects of DR feeding on mitochondrial ROS generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.