Abstract

The frequency of the most common sporadic Apert syndrome mutation (C755G) in the human fibroblast growth factor receptor 2 gene (FGFR2) is 100–1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 103 to >104 times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10−6) the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model). This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp) carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation deleterious to an offspring, thereby unfavorably altering the mutational load in humans. Studying the anatomical distribution of germline mutations can provide new insights into genetic disease and evolutionary change.

Highlights

  • Current methods to measure directly the frequency at which human germline nucleotide substitutions arise each generation include the analysis of sporadic cases of human autosomal dominant or sex-linked diseases [1,2] and DNA analysis of sperm [3,4,5]

  • Heritable nucleotide substitutions can arise in any germline cell during scheduled DNA replication or in nondividing cells by means of error-prone DNA repair

  • A number of genetic conditions including Apert syndrome appear to increase in the offspring of men as they age

Read more

Summary

Introduction

Current methods to measure directly the frequency at which human germline nucleotide substitutions arise each generation include the analysis of sporadic cases of human autosomal dominant or sex-linked diseases [1,2] and DNA analysis of sperm [3,4,5]. Studies of the fibroblast growth factor receptor 2 gene (FGFR2) using both approaches [3,4,6,7] have been useful in understanding the origins of Apert syndrome. Individuals born with this condition are characterized by a number of features, including prematurely fused cranial sutures and fused fingers and toes (see accession numbers). This dominantly inherited disease arises with a frequency between 10À5 and 10À6 [6,7] virtually always due to a spontaneous germline mutation,. Based on what is known about the frequency of transversion mutations at neutral CpG sites since humans and chimpanzees last had a common ancestor [10] and mutations at many human disease loci [11], the C755G mutation frequency is

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call