Abstract

The local distribution of the isotopic composition and molar mass M of a new silicon crystal (Si28-24Pr11) highly enriched in the 28Si isotope is reported, with focus on the experimental methods as well as on the associated uncertainties. The crystal was used in 2018 for the production of two additional silicon spheres for the realization and verification of the Avogadro constant NA using the “X-ray-crystal-density (XRCD) method” which is a primary method for the dissemination of the revised SI units mole and kilogram. 17 subsamples have been investigated (from five different axial and in several radial positions) by isotope ratio mass spectrometry using a multicollector-inductively coupled plasma mass spectrometer (MC-ICP-MS). The average molar mass of the crystal is M = 27.976 933 787(77) g/mol with a relative combined uncertainty uc,rel(M) = 2.7 × 10−9. The mean amount-of-substance fraction of 28Si is x(28Si) = 0.999 993 104 (66) mol/mol indicating that this crystal has the highest enrichment in this isotope which has ever been used for the determination of NA. No local variations in M and x(iSi) (i = 28, 29, and 30) could be identified due to material properties. The results are compared with those from two previous enriched crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call