Abstract

We study modules for the divided power algebra $\mathbf{D}$ in a single variable over a commutative Noetherian ring $\mathbf{K}$. Our first result states that $\mathbf{D}$ is a coherent ring. In fact, we show that there is a theory of Gröbner bases for finitely generated ideals, and so computations with finitely presented $\mathbf{D}$-modules are in principle algorithmic. We go on to determine much about the structure of finitely presented $\mathbf{D}$-modules, such as: existence of certain nice resolutions, computation of the Grothendieck group, results about injective dimension, and how they interact with torsion modules. Our results apply not just to the classical divided power algebra, but to its $q$-variant as well, and even to a much broader class of algebras we introduce called “generalized divided power algebras.” On the other hand, we show that the divided power algebra in two variables over $\mathbf{Z}_{p}$ is not coherent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.