Abstract

BackgroundWe compared the anti-inflammatory effects of phosphodiesterase type 4 (PDE4) inhibitor roflumilast with CHF6001, a novel PDE4 inhibitor designed for inhaled administration, using human alveolar macrophages (AM) and lung tissue explants models. MethodsAM from 13 chronic obstructive pulmonary disease (COPD) patients and 10 smoking controls and lung tissue from 7 COPD patients were stimulated with LPS following preincubation with roflumilast (0.000001–10 µM), CHF6001 (0.000001–0.1 µM), or vehicle. After 24 h, supernatants were analysed for cytokines by ELISA. The effects of both compounds on the phosphorylation and cellular localisation of cAMP response element binding protein (CREB) were assessed by immunofluorescence and Western blot analysis. Extracted RNA was used for quantitative PCR analysis of PDE4 A, B and D mRNA. ResultsPDE4 A, B and D expression were increased in alveolar macrophages and lung tissue of COPD patients compared to controls. Roflumilast and CHF6001 significantly reduced TNF-α production in AM and lung tissue. CHF6001 was more potent than roflumilast with lower EC50s of 0.02, 0.01 and 0.31 nM compared to 0.87, 0.47 and 10.8 nM in respective samples. PDE4 inhibition also inhibited secretion of the chemokines CCL2 and CCL4 from macrophages. Both compounds increased nuclear levels of phosphorylated CREB. ConclusionPDE4 inhibitors caused a robust anti-inflammatory effect on TNF-α production from COPD AM, with inhibition of selective chemokines also observed. CHF6001 caused more potent inhibition of TNF-α production from COPD AM and lung tissue compared to roflumilast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call