Abstract

Urocortin2 (Ucn2) has been revealed to enhance cardiac function in heart failure. However, the pharmacological and toxicological effects of Ucn2 on cardiomyocytes are incompletely understood. In this study, we investigated the possible mechanisms of Ucn2 on mediating the contractility of cardiomyocytes. Mechanical properties and intracellular Ca(2+) properties were measured in isolated cardiomyocytes from different treatment groups. The stress signaling was evaluated using Western blot. The results demonstrated that Ucn2 induced maximal velocity of shortening (+dL/dt), peak height, peak shortening (PS) amplitude, maximal velocity of relengthening (-dL/dt), accompanied by a significant rise in intracellular Ca(2+) level and a fall of the mean time constant of Ca(2+) transient decay (Tau) in WT cardiomyocytes. However, these effects were abolished by preincubation of type 2 CRF receptors (CRFR2) antagonist anti-sauvagine 30 (a-SVG-30). We also found that Ucn2 treatment activated the AMPK pathway in isolated cardiomyocytes via CRFR2. Furthermore, Ucn2 induced protein kinase A (PKA) and phospholamban (PLN) phosphorylation. Pretreatment of PKA inhibitor H89 reduced the inotropic and lusitropic effects of Ucn2 as well as decreased the intracellular Ca(2+) load and slowed down the Ca(2+) transient decay. We also showed that preincubation of Compound C, an inhibitor of AMPK, inhibited the phosphorylation of PKA and the intracellular Ca(2+) level in cardiomyocytes without affecting the contractile function and the Tau of cardiomyocytes. Taken together, it suggests that Ucn2 facilitate the contractility of cardiomyocytes via activating both AMPK and PKA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.