Abstract

AbstractPlatelet glycoprotein VI (GPVI) is a key receptor for collagens that mediates the propagation of platelet attachment and activation. Targeted disruption of the murine gene Gp6 on a mixed 129 × 1/SvJ × C57BL/6J background causes the expected defects in collagen-dependent platelet responses in vitro. The extent of this dysfunction in all Gp6−/− mice is uniform and is not affected by genetic background. However, the same Gp6−/− mice exhibit 2 diametrically opposed phenotypes in vivo. In some mice, tail bleeding times are extremely prolonged, and thrombus formation in an in vivo carotid artery ferric chloride-injury model is significantly impaired. In other littermates, tail bleeding times are within the range of wild-type mice, and in vivo thrombus formation is indistinguishable from that of control mice. Directed intercrosses revealed that these phenotypes are heritable, and a genome-wide single-nucleotide polymorphism scan revealed the most significant linkage to a single locus (8 megabases) on chromosome 4 (logarithm of the odds [LOD] score = 6.9, P < .0001) that we designate Modifier of hemostasis (Mh). Our results indicate that one or more modifier genes in Mh control the extent to which in vivo platelet thrombus formation is disrupted by the absence of platelet GPVI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.