Abstract
Influenced by Gyöngy and Rásonyi (2011), many scholars established the strong convergence of several numerical methods for scalar stochastic differential equations (SDEs) with superlinearly growing drift and Hölder continuous diffusion coefficients. However, their methods depend on the Yamada-Watanabe method and therefore fail to work for multi-dimensional SDEs. In this paper, we study the strong Lp−convergence, for all p⩾2, of the modified truncated Euler–Maruyama method for multi-dimensional SDEs with superlinearly growing drift and concave diffusion coefficients satisfying the Osgood condition. We also discuss an example with computer simulations to illustrate our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.