Abstract

The modified multiple (\(G^{\prime }/G\))-expansion method is proposed in this paper to construct exact solutions of nonlinear evolution equations. The validity and advantage of the proposed method are illustrated by its application to the Sharma–Tasso–Olver equation. As a result, various exact solutions including hyperbolic functions, trigonometric functions and their mixture with parameters are obtained. When some parameters are taken as special values, the known double solitary-like wave solutions are derived from the double hyperbolic function solution. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.