Abstract

Boundary value problems for integrable nonlinear evolution PDEs, like the modified KdV equation, formulated on the half-line can be analyzed by the so-called unified transform method. For the modified KdV equation, this method yields the solution in terms of the solution of a matrix Riemann-Hilbert problem uniquely determined in terms of the initial datum q(x,0), as well as of the boundary values {q(0, t),qx(0, t),qxx(0, t)}. For the Dirichlet problem, it is necessary to characterize the unknown boundary values qx(0, t) and qxx(0, t) in terms of the given data q(x, 0) and q(0, t). It is shown here that in the particular case of a vanishing initial datum and of a sine wave as Dirichlet datum, qx(0, t) and qxx(0, t) can be computed explicitly at least up to third order in a perturbative expansion and that at least up to this order, these functions are asymptotically periodic for large t.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.