Abstract
Coarser grains lead to fewer voids on the fracture surfaces of miniaturized workpiece via affecting the void nucleation, while finer grains result in a higher flow strength by influencing void growth. Furthermore, finer grains make the occurrence of normal tensile fracture difficult, but they accelerate the happening of shear-dominated fracture. These insights help the development of ductile fracture criterion by considering the fracture micro-mechanism in micro-scaled plastic deformation. Shear factor and size effect are thus introduced into the newly modified GTN-Thomason criterion to predict the ductile fracture in micro-scaled plastic deformation of copper sheets with different microstructural grain sizes and deformation stress states. The developed criterion is implemented in simulation of deformation process and well validated to be efficient by corroboration of the experimental results and the simulated load-stroke responses and deformation profiles of five sheets with different grain sizes and stress states. According to the accurate simulation results, the influences of stress triaxiality, the normalized third invariant and grain size on void evolution are further analysed. The results show that the increase of the normalized invariant prevents void shear and leads to a better ductility, while the increase of stress triaxiality facilitates the growth of voids to result in a worse ductility. When the deformation with a relatively high normalized invariant has an ignored void shear, the increase of grain size accelerates the onset of void coalescence and the rate of void growth, leading to a rapid failure. However, when the deformation with a relatively low normalized invariant has an unneglected void shear, finer grains increases the rates of void nucleation, growth and shear, causing a smaller fracture strain. These findings and the modified GTN ductile fracture criterion enhance the understanding and prediction of ductile fracture in micro-scaled plastic deformation, respectively, and further facilitate the development of microparts using by deformation-based micro-manufacturing process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.